论文标题

检查和扩展通过插值改善个性化语言建模的策略

Examination and Extension of Strategies for Improving Personalized Language Modeling via Interpolation

论文作者

Shao, Liqun, Mantravadi, Sahitya, Manzini, Tom, Buendia, Alejandro, Knoertzer, Manon, Srinivasan, Soundar, Quirk, Chris

论文摘要

在本文中,我们详细介绍了插值个性化语言模型和方法的新型策略,以处理量不计(OOV)令牌以改善个性化语言模型。使用REDDIT的公开数据,我们通过使用用户个性化的N-Gram模型来插值基于全局LSTM的创作模型来证明用户级别的离线指标的改进。通过退回统一的OOV惩罚和插值系数,我们观察到,超过80%的用户会受到困惑的升力,平均每位用户的困惑性提升为5.2%。在进行这项研究时,我们扩展了以前在建立NLIS方面的工作,并提高了下游任务的指标鲁棒性。

In this paper, we detail novel strategies for interpolating personalized language models and methods to handle out-of-vocabulary (OOV) tokens to improve personalized language models. Using publicly available data from Reddit, we demonstrate improvements in offline metrics at the user level by interpolating a global LSTM-based authoring model with a user-personalized n-gram model. By optimizing this approach with a back-off to uniform OOV penalty and the interpolation coefficient, we observe that over 80% of users receive a lift in perplexity, with an average of 5.2% in perplexity lift per user. In doing this research we extend previous work in building NLIs and improve the robustness of metrics for downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源