论文标题

lyubeznik数字,$ f $ - 模块和广义分数的模块

Lyubeznik numbers, $F$-modules and modules of generalized fractions

论文作者

Katzman, Mordechai, Sharp, Rodney Y.

论文摘要

本文提出了一种用于计算本地环数字的算法,该算法是普通本地环$ r $的同态图像。所使用的方法采用了$ r $ $ r $的$ f $ modules,尤其是他的$ f $ finite $ f $ - 模块,以及夏普和Zakeri的广义分数的模块。结果表明,$ r $的许多广义分数模块都具有天然结构,例如$ f $ - 模块;这些导致$ f $模块结构在$ r $的某些本地共同体模块上,并与$ f $ - 模块结构相结合,这些结构是由huneke and Sharp的工作造成的,$ r $ r $ r $ - 模块,以计算lyubeznik数字。所得算法已在Macaulay2中实现。

This paper presents an algorithm for calculation of the Lyubeznik numbers of a local ring which is a homomorphic image of a regular local ring $R$ of prime characteristic. The methods used employ Lyubeznik's $F$-modules over $R$, particularly his $F$-finite $F$-modules, and also the modules of generalized fractions of Sharp and Zakeri. It is shown that many modules of generalized fractions over $R$ have natural structures as $F$-modules; these lead to $F$-module structures on certain local cohomology modules over $R$, which are exploited, in conjunction with $F$-module structures on injective $R$-modules that result from work of Huneke and Sharp, to compute Lyubeznik numbers. The resulting algorithm has been implemented in Macaulay2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源