论文标题

基于高度耐受测量的polygog-over头基于量子计算:Gottesman-Kitaev-Preskill代码的全高斯实施

Polylog-overhead highly fault-tolerant measurement-based quantum computation: all-Gaussian implementation with Gottesman-Kitaev-Preskill code

论文作者

Yamasaki, Hayata, Fukui, Kosuke, Takeuchi, Yuki, Tani, Seiichiro, Koashi, Masato

论文摘要

生成量子纠缠中飞行光子量子系统的可伸缩性为实施大规模耐受量的量子计算提供了潜力,尤其是通过基于测量的量子计算(MBQC)。但是,由于协议中使用的纠缠结构的几何约束,在实施量子计算时不可避免地会施加多项式间接费用,而多项式间接可能会消除量子计算中有用的多项式加速。为了实现量子计算而无需取消这种计算,我们通过引入低空Qubit置换的纠缠结构来构建光子MBQC的协议,该协议的成就与多形载体开销一样低。基于此协议,我们设计了一个容忍性的光子MBQC协议,可以通过实验可拖动的同源性检测和高斯纠缠操作与Gottesman-Kitaev-kitaev-Preskill(GKP)量子错误纠纷验证代码相结合,我们与$ 7 $ -Qubit的代码相吻合。就GKP代码的挤压级别而言,我们的容忍故障协议达到了阈值$ 7.8 $ db,优于使用GKP Surface Code的最佳现有协议的$ 8.3 $ DB。因此,在MBQC上的理论进步与实现MBQC方面的理论进步之间存在差距,我们的结果为实现包括多项式的大量量子加速的新方法打开了新的方法。

Scalability of flying photonic quantum systems in generating quantum entanglement offers a potential for implementing large-scale fault-tolerant quantum computation, especially by means of measurement-based quantum computation (MBQC). However, existing protocols for MBQC inevitably impose a polynomial overhead cost in implementing quantum computation due to geometrical constraints of entanglement structures used in the protocols, and the polynomial overhead potentially cancels out useful polynomial speedups in quantum computation. To implement quantum computation without this cancellation, we construct a protocol for photonic MBQC that achieves as low as poly-logarithmic overhead, by introducing an entanglement structure for low-overhead qubit permutation. Based on this protocol, we design a fault-tolerant photonic MBQC protocol that can be performed by experimentally tractable homodyne detection and Gaussian entangling operations combined with the Gottesman-Kitaev-Preskill (GKP) quantum error-correcting code, which we concatenate with the $7$-qubit code. Our fault-tolerant protocol achieves the threshold $7.8$ dB in terms of the squeezing level of the GKP code, outperforming $8.3$ dB of the best existing protocol for fault-tolerant quantum computation with the GKP surface code. Thus, bridging a gap between theoretical progress on MBQC and photonic experiments towards implementing MBQC, our results open a new way towards realization of a large class of quantum speedups including those polynomial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源