论文标题

基于功能相互作用的神经网络用于点击率预测

Feature Interaction based Neural Network for Click-Through Rate Prediction

论文作者

Zou, Dafang, Zhang, Leiming, Mao, Jiafa, Sheng, Weiguo

论文摘要

点击率(CTR)预测是计算广告和推荐系统中最重要,最具挑战性的预测之一。为了使用这些数据构建机器学习系统,正确对功能之间的互动进行建模很重要。但是,许多当前的作品以简单的方式计算特征交互,例如内部产品和元素的产品。本文旨在充分利用功能之间的信息,并在CTR预测任务中提高深层神经网络的性能。在本文中,我们提出了一个基于特征相互作用的神经网络(FINN),该神经网络能够通过三维关系张量来对特征相互作用进行建模。 Finn为底层的特征交互提供了表示形式,在建模高阶特征交互时,神经网络的非线性表示。与经典基线相比,我们对CTR预测任务进行了评估,并表明我们的Deep Finn模型优于其他最先进的深层模型,例如PNN和DEEPFM。评估结果表明,特征相互作用包含重要信息,以提供更好的CTR预测。这也表明我们的模型可以有效地学习特征交互,并在现实世界数据集中实现更好的性能。

Click-Through Rate (CTR) prediction is one of the most important and challenging in calculating advertisements and recommendation systems. To build a machine learning system with these data, it is important to properly model the interaction among features. However, many current works calculate the feature interactions in a simple way such as inner product and element-wise product. This paper aims to fully utilize the information between features and improve the performance of deep neural networks in the CTR prediction task. In this paper, we propose a Feature Interaction based Neural Network (FINN) which is able to model feature interaction via a 3-dimention relation tensor. FINN provides representations for the feature interactions on the the bottom layer and the non-linearity of neural network in modelling higher-order feature interactions. We evaluate our models on CTR prediction tasks compared with classical baselines and show that our deep FINN model outperforms other state-of-the-art deep models such as PNN and DeepFM. Evaluation results demonstrate that feature interaction contains significant information for better CTR prediction. It also indicates that our models can effectively learn the feature interactions, and achieve better performances in real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源