论文标题

非线性步行者和对拥挤网络的有效探索

Nonlinear walkers and efficient exploration of congested networks

论文作者

Carletti, Timoteo, Asllani, Malbor, Fanelli, Duccio, Latora, Vito

论文摘要

随机步行是探索或搜索图的最简单方法,并揭示了一种非常有用的工具,可以调查和表征来自现实世界中复杂网络的结构属性,例如它们已被用来识别给定网络的模块,其最中心的节点和路径,或者确定达到目标的典型时间。尽管已经提出了各种类型的随机步道,其运动是偏见的,这些步道仍然适合分析解决方案,但大多数(如果不是全部)依赖于步行者的线性和独立性的假设。我们介绍了一类新型的非线性随机过程,描述了一个与有限节点能力的网络相互作用的随机步行者的系统。过渡概率由目标节点上可用空间的非线性函数调节,其偏置参数允许调整步行者的趋势,以避免其他步行者占据的节点。首先,我们得出管理系统动力学的主方程,并在最一般的情况下以及在不同级别的网络拥塞下确定了步行者在平衡处的职业概率的分析表达。然后,我们研究了不同类型的合成和现实世界网络,为熵率提供了数值和分析结果,这是步行者的网络勘探能力的代理。我们发现,对于每个非线性偏见的每个级别,都有最佳的拥挤在给定的网络拓扑中最大化索引率。分析表明,大量的现实世界网络的组织方式是在拥挤的条件下倾向于探索。我们的工作提供了一个通用且通用的框架,以建模非线性随机过程,其过渡概率随着系统的当前状态而变化。

Random walks are the simplest way to explore or search a graph, and have revealed a very useful tool to investigate and characterize the structural properties of complex networks from the real world, e.g. they have been used to identify the modules of a given network, its most central nodes and paths, or to determine the typical times to reach a target. Although various types of random walks whose motion is node biased have been proposed, which are still amenable to analytical solution, most if not all of them rely on the assumption of linearity and independence of the walkers. We introduce a novel class of nonlinear stochastic processes describing a system of interacting random walkers moving over networks with finite node capacities. The transition probabilities are modulated by nonlinear functions of the available space at the destination node, with a bias parameter that allows to tune the tendency of the walkers to avoid nodes occupied by other walkers. Firstly, we derive the master equation governing the dynamics of the system, and we determine an analytical expression for the occupation probability of the walkers at equilibrium in the most general case, and under different level of network congestions. Then, we study different type of synthetic and real-world networks, presenting numerical and analytical results for the entropy rate, a proxy for the network exploration capacities of the walkers.We find that, for each level of the nonlinear bias, there is an optimal crowding that maximises the entropy rate in a given network topology. The analysis suggests that a large fraction of real-world networks are organised in such a way as to favour exploration under congested conditions. Our work provides a general and versatile framework to model nonlinear stochastic processes whose transition probabilities vary in time depending on the current state of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源