论文标题
三方从纠缠的子空间中真正纠缠的状态
Tripartite genuinely entangled states from entanglement-breaking subspaces
论文作者
论文摘要
确定真正的纠缠是量子信息处理中的核心问题。我们通过合并两个系统来研究三方状态的三方状态。我们表明,当两个两分国家的范围都在纠缠的子空间时,三方国家是一个真正的纠结状态。当两个两分国家之一的排名二时,我们进一步研究了三方状态。我们的结果为论文中提出的猜想提供了最新进展[yi shen $ \ textit {et al} $,J。Phys。 A 53,125302(2020)]。我们将结果应用于构建多部分状态,其双分部分还原密度运算符具有附加的EOF。此外,在本地运营和经典沟通中,这些国家在每两十字架上都是可以提炼的。
The determination of genuine entanglement is a central problem in quantum information processing. We investigate the tripartite state as the tensor product of two bipartite entangled states by merging two systems. We show that the tripartite state is a genuinely entangled state when the range of both bipartite states are entanglement-breaking subspaces. We further investigate the tripartite state when one of the two bipartite states has rank two. Our results provide the latest progress on a conjecture proposed in the paper [Yi Shen $\textit{et al}$, J. Phys. A 53, 125302 (2020)]. We apply our results to construct multipartite states whose bipartite reduced density operators have additive EOF. Further, such states are distillable across every bipartition under local operations and classical communications.