论文标题
关于良好的普遍性和Riemann假设
On good universality and the Riemann hypothesis
论文作者
论文摘要
我们使用应用于Boole的转换及其变体及其在实际线路上的变体及其不变的度量的子序列和移动平均值定理,从而给出了Lindelh {Ö} F假设和Riemann假设的新特征。然后使用这些想法来研究Dirichlet L系的价值分布,以及Dedekind,Hurwitz和Riemann及其衍生物的Zeta功能。这是基于R. L.的早期工作,使用伯克霍夫的崇高定理和概率理论。
We use subsequence and moving average ergodic theorems applied to Boole's transformation and its variants and their invariant measures on the real line to give new characterisations of the Lindelh{ö}f Hypothesis and the Riemann hypothesis. These ideas are then used to study the value distribution of Dirichlet L series, and the zeta functions of Dedekind, Hurwitz and Riemann and their derivatives. This builds on earlier work of R. L. using Birkhoff's ergodic theorem and probability theory.