论文标题
ARGO数据的功能数据
A functional-data approach to the Argo data
论文作者
论文摘要
ARGO数据是一个现代的海洋学数据集,可在海洋深度2,000米的上方的温度和盐分测量中提供前所未有的全球覆盖范围。我们从功能数据分析(FDA)的角度研究ARGO数据。我们为平均值和协方差估算开发时空功能性kriging方法,以预测固定位置的温度和盐度,作为深度的平滑函数。通过结合FDA和空间统计的工具,包括平滑花纹,局部回归和多元空间建模和预测,我们的方法比当前方法具有优势,这些方法比当前的方法考虑了在固定深度处的次数估计。我们的方法自然地利用了空间,时间和深度中不规则采样的数据,以适合温度和盐度的时空功能模型。开发的框架提供了解决基本科学问题的新工具,涉及海洋的整个上水柱,例如估计海洋热含量,分层和热盐振荡。例如,我们表明,基于压力的离散积分近似值,我们的功能方法比估计值更准确。此外,使用衍生功能估计值,我们获得了混合层深度的全局图的新产品,这是研究海洋中热吸收和养分循环的关键成分。衍生品估计还揭示了通过混合特别不同的水质量区分的区域中密度反转的证据。
The Argo data is a modern oceanography dataset that provides unprecedented global coverage of temperature and salinity measurements in the upper 2,000 meters of depth of the ocean. We study the Argo data from the perspective of functional data analysis (FDA). We develop spatio-temporal functional kriging methodology for mean and covariance estimation to predict temperature and salinity at a fixed location as a smooth function of depth. By combining tools from FDA and spatial statistics, including smoothing splines, local regression, and multivariate spatial modeling and prediction, our approach provides advantages over current methodology that consider pointwise estimation at fixed depths. Our approach naturally leverages the irregularly-sampled data in space, time, and depth to fit a space-time functional model for temperature and salinity. The developed framework provides new tools to address fundamental scientific problems involving the entire upper water column of the oceans such as the estimation of ocean heat content, stratification, and thermohaline oscillation. For example, we show that our functional approach yields more accurate ocean heat content estimates than ones based on discrete integral approximations in pressure. Further, using the derivative function estimates, we obtain a new product of a global map of the mixed layer depth, a key component in the study of heat absorption and nutrient circulation in the oceans. The derivative estimates also reveal evidence for density inversions in areas distinguished by mixing of particularly different water masses.