论文标题
发现量子限制Chern磁铁TBMN6SN6的发现
Discovery of a quantum limit Chern magnet TbMn6Sn6
论文作者
论文摘要
几何,拓扑和相关性之间的量子水平相互作用位于基本物理学的最前沿。由于异常的晶格几何形状和时间交流对称性的破坏,因此可以预测Kagome磁铁可支持内在的Chern量子相。然而,缺乏具有强大平面磁化强度的理想自旋轨道耦合量晶格的量子材料。在这里,我们使用扫描隧道显微镜发现新的拓扑kagome磁铁TBMN6SN6,该磁铁磁铁TBMN6SN6几乎满足上述标准。我们以原子分辨率可视化其有效的无缺陷的纯粹的基于MN的铁磁kagome晶格。值得注意的是,它的电子状态在应用磁场时表现出不同的Landau量化,并且量化的Landau风扇结构具有较大的Chern间隙的自旋偏振零散分散体。我们进一步证明了Chern Gap和拓扑边缘状态之间的巨大对应关系,以及Chern Gapped Dirac Fermions的浆果曲率场对应关系。我们的结果表明,在TBMN6SN6中实现了量子限制的Chern阶段,为在RMN6SN6(R = Rare Earth Element)家族中发现具有多种磁性结构的RMN6SN6(R =稀土元素)中的拓扑量子现象开辟了途径。我们对涵盖实际和动量空间的磁性散装晶体对应关系的可视化证明了一种揭示拓扑磁铁的原理证明方法。
The quantum level interplay between geometry, topology, and correlation is at the forefront of fundamental physics. Owing to the unusual lattice geometry and breaking of time-reversal symmetry, kagome magnets are predicted to support intrinsic Chern quantum phases. However, quantum materials hosting ideal spin-orbit coupled kagome lattices with strong out-of-plane magnetization have been lacking. Here we use scanning tunneling microscopy to discover a new topological kagome magnet TbMn6Sn6, which is close to satisfying the above criteria. We visualize its effectively defect-free purely Mn-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state exhibits distinct Landau quantization upon the application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk-boundary correspondence between the Chern gap and topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, opening up an avenue for discovering topological quantum phenomena in the RMn6Sn6 (R = rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk-boundary-Berry correspondence covering real and momentum space demonstrates a proof-of-principle method revealing topological magnets.