论文标题
KIU-NET:使用过度完整表示,朝着精确分割生物医学图像
KiU-Net: Towards Accurate Segmentation of Biomedical Images using Over-complete Representations
论文作者
论文摘要
由于其出色的性能,U-NET是近年来用于生物医学图像分割的最广泛使用的骨干结构。但是,在我们的研究中,我们观察到,在检测较小的解剖学地标的嘈杂边界模糊的情况下,性能下降。我们详细分析了此问题,并通过提出一个过度完整的体系结构(KI-NET)来解决该问题,该体系结构涉及将数据投射到更高维度上(从空间意义上)。当使用U-NET增强时,该网络在分割小的解剖标志和模糊噪声边界的同时,在获得更好的整体性能的同时,会大大改善。此外,提出的网络还具有额外的好处,例如更快的收敛和较少的参数。我们评估了从2D超声(US)的早产新生儿的大脑解剖学分割的任务评估所提出的方法,与标准-U-NET相比,骰子的准确性和JACCARD指数的提高约为4%,而将最近的最佳方法却优于最近的最佳方法。代码:https://github.com/jeya-maria-jose/kiu-net-pytorch。
Due to its excellent performance, U-Net is the most widely used backbone architecture for biomedical image segmentation in the recent years. However, in our studies, we observe that there is a considerable performance drop in the case of detecting smaller anatomical landmarks with blurred noisy boundaries. We analyze this issue in detail, and address it by proposing an over-complete architecture (Ki-Net) which involves projecting the data onto higher dimensions (in the spatial sense). This network, when augmented with U-Net, results in significant improvements in the case of segmenting small anatomical landmarks and blurred noisy boundaries while obtaining better overall performance. Furthermore, the proposed network has additional benefits like faster convergence and fewer number of parameters. We evaluate the proposed method on the task of brain anatomy segmentation from 2D Ultrasound (US) of preterm neonates, and achieve an improvement of around 4% in terms of the DICE accuracy and Jaccard index as compared to the standard-U-Net, while outperforming the recent best methods by 2%. Code: https://github.com/jeya-maria-jose/KiU-Net-pytorch .