论文标题
Rytov完全有效的形式主义的适用性在谐振元面的物理描述和设计上
Applicability of the Rytov full effective-medium formalism to the physical description and design of resonant metasurfaces
论文作者
论文摘要
定期光子晶格构成了支持众多科学概念和应用的物理学的基本支柱。超材料和元结构的出现基于对其性质的深刻理解。基于Rytov的最初1956年制定,众所周知,具有深层次波长周期性的光子晶格可以通过具有有效折射率的均匀空间近似。文献中常用的随之有效的中等理论(EMT)是基于零根的根源,而封闭形式的先验方程则具有无限数量的根。到目前为止,这些高阶解决方案已被完全忽略。甚至Rytov本人都丢弃了他们,并为深波波长制度提供了近似的解决方案。尽管Rytov EMT对无限的半空间晶格进行了建模,但它与我们所显示的有限厚度的实用薄膜周期性结构高度相关。因此,在这里,我们建立了一个理论框架,以系统地描述亚波长的共振行为,并使用完整的Rytov溶液预测共振光子晶格的光学响应。迅速的结果是通过可用于共振晶格特性的直接的新物理见解获得的。我们表明,完整的Rytov公式隐式包含与evanevanscent波的折射率解决方案,这些解决方案驱动了横向传播的BLOCH模式基础,从而引起了谐振晶格的属性。实际上,共鸣的重新辐射BLOCH模式经历了波长依赖性的折射率,这是Rytov表达式的解决方案。该洞察力可用于建模引导模式的谐振设备,包括宽带反射器,带通滤波器和极化器。
Periodic photonic lattices constitute a fundamental pillar of physics supporting a plethora of scientific concepts and applications. The advent of metamaterials and metastructures is grounded in deep understanding of their properties. Based on the original 1956 formulation by Rytov, it is well known that a photonic lattice with deep subwavelength periodicity can be approximated with a homogeneous space having an effective refractive index. Whereas the attendant effective-medium theory (EMT) commonly used in the literature is based on the zeroth root, the closed-form transcendental equations possess an infinite number of roots. Thus far, these higher-order solutions have been totally ignored; even Rytov himself discarded them and proceeded to approximate solutions for the deep-subwavelength regime. In spite of the fact that the Rytov EMT models an infinite half-space lattice, it is highly relevant to modeling practical thin-film periodic structures with finite thickness as we show. Therefore, here, we establish a theoretical framework to systematically describe subwavelength resonance behavior and to predict the optical response of resonant photonic lattices using the full Rytov solutions. Expeditious results are obtained with direct, new physical insights available for resonant lattice properties. We show that the full Rytov formulation implicitly contains refractive-index solutions pertaining directly to evanescent waves that drive the laterally-propagating Bloch modes foundational to resonant lattice properties. In fact, the resonant reradiated Bloch modes experience wavelength-dependent refractive indices that are solutions of the Rytov expressions. This insight is useful in modeling guided-mode resonant devices including wideband reflectors, bandpass filters, and polarizers.