论文标题

某些Kruskal-Katona类型结果的稳定定理

Stability theorems for some Kruskal-Katona type results

论文作者

Liu, Xizhi, Mukherjee, Sayan

论文摘要

经典的kruskal-katona定理给出了$ r $ rubiform HyperGraph $ \ Mathcal {H} $的大小,作为其阴影大小的函数。它的稳定版本是由Keevash获得的,他证明,如果$ \ Mathcal {H} $的大小接近最大值,则$ \ Mathcal {H} $在结构上接近完整的$ R $ rub-roniform-suorniform HyperGraph。我们证明了两类超图的稳定性结果相似,许多研究人员已经研究了许多研究人员:取消性超图和超图,而没有群集的扩大。

The classical Kruskal-Katona theorem gives a tight upper bound for the size of an $r$-uniform hypergraph $\mathcal{H}$ as a function of the size of its shadow. Its stability version was obtained by Keevash who proved that if the size of $\mathcal{H}$ is close to the maximum, then $\mathcal{H}$ is structurally close to a complete $r$-uniform hypergraph. We prove similar stability results for two classes of hypergraphs whose extremal properties have been investigated by many researchers: the cancellative hypergraphs and hypergraphs without expansion of cliques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源