论文标题

一种深度学习方法,用于类星体连续预测

A Deep Learning Approach to Quasar Continuum Prediction

论文作者

Liu, Bin, Bordoloi, Rongmon

论文摘要

我们提出了一种新颖的智能类星体连续神经网络(IQNET),预测了其余框架波长范围1020 Angstroms $ \leqλ\ leq leq $ 1600埃克斯特群的内在连续体。我们使用Hubble Spectroscopic Legacy Archive的低分辨率远程望远镜/宇宙起源紫外线紫外线光谱($ z \ sim 0.2 $)训练该网络,并将其应用于不同天文学调查的准continua。我们利用在其余框架波长范围[1020,1600]埃的hsla Quasar光谱,其总中位信噪比至少为五个。 IQNET的中位数为2.24%,训练类星体光谱为4.17%,测试类星体光谱。我们应用IQNET并预测$ \ sim $ 3200 SDSS-DR16 Quasar Spectra在更高的红移($ 2 <z \ leq 5 $)上,并测量LY-$ $ ly-lux flux($ <f> $)的红移演变。我们用红移来测量$ <f> $的逐渐演变,我们将其描述为适合Ly-$α$森林的有效光学深度的幂律。我们的测量值与文献中$ <f> $的其他估计值一致,但是提供了更准确的测量值,因为我们直接测量了从Ly-$α$ Forest中最小污染的类星体连续体。这项工作证明,深度学习IQNET模型可以高精度预测类星体连续体,并显示了这种方法对类星体连续预测的生存能力。

We present a novel intelligent quasar continuum neural network (iQNet), predicting the intrinsic continuum of any quasar in the rest-frame wavelength range 1020 Angstroms $\leq λ\leq$ 1600 Angstroms. We train this network using high-resolution Hubble Space Telescope/Cosmic Origin Spectrograph ultraviolet quasar spectra at low redshift ($z \sim 0.2$) from the Hubble Spectroscopic Legacy Archive, and apply it to predict quasar continua from different astronomical surveys. We utilize the HSLA quasar spectra that are well-defined in the rest-frame wavelength range [1020, 1600] Angstroms with an overall median signal-to-noise ratio of at least five. The iQNet achieves a median AFFE of 2.24% on the training quasar spectra, and 4.17% on the testing quasar spectra. We apply iQNet and predict the continua of $\sim$3200 SDSS-DR16 quasar spectra at higher redshift ($2< z \leq 5$) and measure the redshift evolution of mean transmitted flux ($< F >$) in the Ly-$α$ forest region. We measure a gradual evolution of $< F >$ with redshift, which we characterize as a power-law fit to the effective optical depth of the Ly-$α$ forest. Our measurements are broadly consistent with other estimates of $<F>$ in the literature, but provide a more accurate measurement as we are directly measuring the quasar continuum where there is minimum contamination from the Ly-$α$ forest. This work proves that the deep learning iQNet model can predict the quasar continuum with high accuracy and shows the viability of such methods for quasar continuum prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源