论文标题
最大超对称RG流动和4D的可集成性
Maximally Supersymmetric RG Flows in 4D and Integrability
论文作者
论文摘要
我们重新审视$ \ Mathcal {n} = 4 $ Super Yang-Mills理论的领先无关变形,该理论保留了16个增压。我们考虑$ s^3 \ times \ mathbb {r} $上的变形理论。由于形式主义意识到了八个增压,我们能够写出经典动作的封闭式表达。然后,我们通过研究平面摄动理论中的自旋链哈密顿量来研究光谱问题的整合性。尽管有一些结构性迹象表明适当定义的变形可能可以保持集成性,但我们无法通过两循环计算来解决这个问题。的确,由于意外增强了对称性,因此我们恢复了未构成的$ \ Mathcal {n} = 4 $ sym的可集成的哈密顿量。我们还评论了该理论的全息解释。
We revisit the leading irrelevant deformation of $\mathcal{N}=4$ Super Yang-Mills theory that preserves sixteen supercharges. We consider the deformed theory on $S^3 \times \mathbb{R}$. We are able to write a closed form expression of the classical action thanks to a formalism that realizes eight supercharges off shell. We then investigate integrability of the spectral problem, by studying the spin-chain Hamiltonian in planar perturbation theory. While there are some structural indications that a suitably defined deformation might preserve integrability, we are unable to settle this question by our two-loop calculation; indeed up to this order we recover the integrable Hamiltonian of undeformed $\mathcal{N}=4$ SYM due to accidental symmetry enhancement. We also comment on the holographic interpretation of the theory.