论文标题

线性椭圆和抛物线方程的解决方案梯度的指数界限

Exponential bounds for gradient of solutions to linear elliptic and parabolic equations

论文作者

Balc'h, Kévin Le

论文摘要

在本文中,我们证明了对线性椭圆和抛物线方程的解决方案的全球梯度估计。对于足够平滑的有界凸域$ω\ subset \ mathbb {r}^n $,我们证明了w_0^{1,\ infty}中的解决方案$ ϕ \ in w_0^{1,\ infty}(ω)$ l^{\ infty}(ω; \ \ m athbb {r})$,满足$ | \ nabla ϕ | _ {\ infty} \ leq c | f | f | _ {\ infty} $,带有正常常数$ c = \ exp(c = \ exp(c(c))我们还可以在抛物线环境中获得类似的估计。这些指数界限的证明取决于本·安德鲁斯(Ben Andrews)和朱莉·克鲁特巴克(Julie Clutterbuck)的一系列论文启发的全球梯度估计。这项工作是由兰迪斯猜想的双重版本激励的。

In this paper, we prove global gradient estimates for solutions to linear elliptic and parabolic equations. For a sufficiently smooth bounded convex domain $Ω\subset \mathbb{R}^N$, we show that a solution $ϕ\in W_0^{1,\infty}(Ω)$ to an appropriate elliptic equation $\mathcal{L} ϕ= F$, with $F \in L^{\infty}(Ω;\mathbb{R})$, satisfies $|\nabla ϕ|_{\infty} \leq C |F|_{\infty}$, with a positive constant $C = \exp(C(\mathcal{L})\text{diam}(Ω))$. We also obtain similiar estimates in the parabolic setting. The proof of these exponential bounds relies on global gradient estimates inspired by a series of papers by Ben Andrews and Julie Clutterbuck. This work is motivated by a dual version of the Landis conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源