论文标题
根据最小的几何变形方法
Durgapal IV model in light of the minimal geometric deformation approach
论文作者
论文摘要
本文通过最小的几何变形方法在重力解耦方面,研究局部各向异性对杜加帕尔的第四个模型的影响。为此,强加了$θ$的组件的最通用的状态方程,以获取decoupler函数$ f(r)$。此外,研究了所获得的解决方案的某些特性,例如恒星内部构成恒星内部的显着材料含量的行为,通过改良的托尔曼(oppenheimer) - 伏尔科夫(Volkoff程序,以检查模型是否在物理上是可以接受的。关于稳定性分析,发现当压力波和对流因子的声速与绝热指数和哈里森(Harrison)和哈里森(Harrison-Zeldovich-Zeldovich-Novikov案例中发生的事情)时,该模型呈现不稳定的区域。为了产生更现实的图片,放置了一些已知的紧凑对象的数值数据,并考虑了参数$α$的不同值与gr caseı.e,$α= 0 $进行比较。
The present article is devoted to the study of local anisotropies effects on the Durgapal's fourth model in the context of gravitational decoupling via the Minimal Geometric Deformation approach. To do it, the most general equation of state relating the components of the $θ$--sector is imposed to obtain the decoupler function $f(r)$. In addition, certain properties of the obtained solution are investigated, such as the behavior of the salient material content threading the stellar interior, causality and energy conditions, hydrostatic balance through modified Tolman--Oppenheimer--Volkoff conservation equation and stability mechanism against local anisotropies by means of adiabatic index, sound velocity of the pressure waves, convection factor and Harrison--Zeldovich--Novikov procedure, in order to check if the model is physically admissible or not. Regarding the stability analysis, it is found that the model presents unstable regions when the sound speed of the pressure waves and convection factor are used in distinction with what happens in the adiabatic index and Harrison--Zeldovich--Novikov case. To produce a more realistic picture the numerical data for some known compact objects was placed and different values of the parameter $α$ were considered to compare with the GR case ı.e, $α=0$.