论文标题

随机超图中的狄拉克型定理

Dirac-type theorems in random hypergraphs

论文作者

Ferber, Asaf, Kwan, Matthew

论文摘要

对于正整数$ d <k $,$ n $由$ k $排除,让$ m_ {d}(k,n)$为最小$ d $ -Degree,以确保在$ k $均匀的 - 均匀的超图中存在完美匹配。在图案中(其中$ k = 2 $),dirac的经典定理说$ m_ {1}(2,n)= \ lceil n/2 \ rceil $。但是,总的来说,我们对$ m_ {d}(k,n)$的值的理解仍然非常有限,这是确定或近似这些值的积极研究主题。在本文中,我们证明了与随机超图相对于随机超图的“转移”定理。具体而言,对于任何$ d <k $,任何$ \ varepsilon> 0 $和任何“不小” $ p $,我们证明一个随机的$ k $ k $均匀的hypergraph $ g $带有$ n $ pertices and gend pertices and Edge Pripities and Edge p $通常具有每个Spanning $ G $的属性,每个跨度为$ g $,至少是$ gertem $ $ $ p $ p $ p $ __+vareps i \ vareps a;匹配。我们证明的一个有趣的方面是吸收方法的“非构造性”应用,它使我们能够证明在$ m_ {d}(k,n)$的情况下,而无需实际知道其值。

For positive integers $d<k$ and $n$ divisible by $k$, let $m_{d}(k,n)$ be the minimum $d$-degree ensuring the existence of a perfect matching in a $k$-uniform hypergraph. In the graph case (where $k=2$), a classical theorem of Dirac says that $m_{1}(2,n)=\lceil n/2\rceil$. However, in general, our understanding of the values of $m_{d}(k,n)$ is still very limited, and it is an active topic of research to determine or approximate these values. In this paper we prove a "transference" theorem for Dirac-type results relative to random hypergraphs. Specifically, for any $d< k$, any $\varepsilon>0$ and any "not too small" $p$, we prove that a random $k$-uniform hypergraph $G$ with $n$ vertices and edge probability $p$ typically has the property that every spanning subgraph of $G$ with minimum degree at least $(1+\varepsilon)m_{d}(k,n)p$ has a perfect matching. One interesting aspect of our proof is a "non-constructive" application of the absorbing method, which allows us to prove a bound in terms of $m_{d}(k,n)$ without actually knowing its value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源