论文标题

学习编码衍射阶段检索的照明模式

Learning Illumination Patterns for Coded Diffraction Phase Retrieval

论文作者

Cai, Zikui, Hyder, Rakib, Asif, M. Salman

论文摘要

从非线性测量中恢复信号涉及解决迭代优化问题。在本文中,我们提出了一个框架,以优化传感参数,以提高通过给定迭代方法恢复的信号的质量。特别是,我们学习使用基于固定成本的最小化相位检索方法从编码衍射模式中恢复信号的照明模式。编码的衍射相检索是一个物理上现实的系统,在该系统中,在传感器记录其傅立叶幅度之前,信号首先由一系列代码调节。我们将相位检索方法表示为带有固定层的展开网络,并通过优化测量参数来最大程度地减少恢复误差。由于迭代/层的数量是固定的,因此恢复会产生固定成本。我们在不同条件下对各种数据集进行了广泛的仿真结果,并与现有方法进行了比较。我们的结果表明,所提出的方法使用少数训练图像学到的模式提供了几乎完美的重建。我们提出的方法在准确性和速度方面都对现有方法进行了重大改进。

Signal recovery from nonlinear measurements involves solving an iterative optimization problem. In this paper, we present a framework to optimize the sensing parameters to improve the quality of the signal recovered by the given iterative method. In particular, we learn illumination patterns to recover signals from coded diffraction patterns using a fixed-cost alternating minimization-based phase retrieval method. Coded diffraction phase retrieval is a physically realistic system in which the signal is first modulated by a sequence of codes before the sensor records its Fourier amplitude. We represent the phase retrieval method as an unrolled network with a fixed number of layers and minimize the recovery error by optimizing over the measurement parameters. Since the number of iterations/layers are fixed, the recovery incurs a fixed cost. We present extensive simulation results on a variety of datasets under different conditions and a comparison with existing methods. Our results demonstrate that the proposed method provides near-perfect reconstruction using patterns learned with a small number of training images. Our proposed method provides significant improvements over existing methods both in terms of accuracy and speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源