论文标题

使用生成模型的不确定性感知深层分类器

Uncertainty-Aware Deep Classifiers using Generative Models

论文作者

Sensoy, Murat, Kaplan, Lance, Cerutti, Federico, Saleki, Maryam

论文摘要

当他们做出不知情的预测时,深层神经网络通常对他们不知道和过分自信的知识一无所知。最近的一些方法通过训练模型直接量化分类不确定性,以输出接近类边界或训练分布外部的数据样本的高不确定性。这些方法在培训期间使用辅助数据集来表示分布样本。但是,选择或创建此类辅助数据集并非平凡,尤其是对于图像等高维数据而言。在这项工作中,我们开发了一种新型的神经网络模型,该模型能够表达出差异和认知不确定性,以区分特征空间的决策边界和分布区域。为此,纳入了各种自动编码器和生成对抗网络,以自动生成用于培训的止境范例。通过广泛的分析,我们证明了所提出的方法可以更好地估计分布样本和分布外样品的不确定性,以及针对最先进方法的众所周知的数据集的对抗性示例,包括最近的贝叶斯方法的神经网络和异常检测方法。

Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions. Some recent approaches quantify classification uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution. These approaches use an auxiliary data set during training to represent out-of-distribution samples. However, selection or creation of such an auxiliary data set is non-trivial, especially for high dimensional data such as images. In this work we develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions of the feature space. To this end, variational autoencoders and generative adversarial networks are incorporated to automatically generate out-of-distribution exemplars for training. Through extensive analysis, we demonstrate that the proposed approach provides better estimates of uncertainty for in- and out-of-distribution samples, and adversarial examples on well-known data sets against state-of-the-art approaches including recent Bayesian approaches for neural networks and anomaly detection methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源