论文标题

$ \ Mathbf {H^\ infty} $地图的密集稳定等级和runge类型定理

Dense Stable Rank and Runge Type Approximation Theorems for $\mathbf{H^\infty}$ Maps

论文作者

Brudnyi, Alexander

论文摘要

令$ h^\ infty(\ mathbb d \ times \ n)$为有界全体形态函数的Banach代数,这些函数在分离式上定义的,可计算的许多副本的开放单位磁盘$ \ MATHBB D \ subset \ subset \ mathbb c $的许多副本。我们表明,$ h^\ infty(\ Mathbb d \ times \ n)$的密集稳定等级是一种,使用此事实证明了一些非线性runge-type近似定理,用于$ h^\ infty(\ mathbb d \ times \ n)$映射。然后,我们将这些结果应用于获得代数$ h^\ infty(\ Mathbb d)$的类似近似问题中近似图的近似图的先验统一估计。

Let $H^\infty(\mathbb D\times\N)$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk $\mathbb D\subset\mathbb C$. We show that the dense stable rank of $H^\infty(\mathbb D\times\N)$ is one and using this fact prove some nonlinear Runge-type approximation theorems for $H^\infty(\mathbb D\times\N)$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for algebra $H^\infty(\mathbb D)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源