论文标题
从独立的多域标签中分散学习的人重新识别
Decentralised Learning from Independent Multi-Domain Labels for Person Re-Identification
论文作者
论文摘要
由于共享和集中大规模培训数据的可用性,深度学习已经成功地完成了许多计算机视觉任务。但是,对隐私问题的越来越多的意识为深度学习带来了新的挑战,尤其是对于人类与人的认识,例如人重新识别(RE-ID)。在这项工作中,我们通过从独立多域标签空间的多个用户站点分发的非共享私人培训数据分散学习来解决重新ID问题。我们提出了一个名为联合人重新识别(FEDREID)的新颖范式,通过同时学习多个隐私保留的本地模型(本地客户端),以构建可通用的全球模型(中央服务器)。具体来说,每个本地客户端都会从服务器接收全局模型更新,并使用其本地数据训练本地模型,独立于所有其他客户端。然后,中央服务器汇总可转移的本地模型更新,以构建可通用的全局功能嵌入模型,而无需访问本地数据,以保留本地隐私。这个客户服务器协作学习过程是在隐私控制下迭代执行的,从而使Fedreid能够实现分散的学习而无需共享分布式数据或收集任何集中式数据。十个重新ID基准测试的广泛实验表明,FedReid在没有共享培训数据的情况下实现了令人信服的概括性能,而不是本地培训数据,同时固有地保护了每个本地客户的隐私。这比当代的重新ID方法具有独特的优势。
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data. However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for human subject related recognition such as person re-identification (Re-ID). In this work, we solve the Re-ID problem by decentralised learning from non-shared private training data distributed at multiple user sites of independent multi-domain label spaces. We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients). Specifically, each local client receives global model updates from the server and trains a local model using its local data independent from all the other clients. Then, the central server aggregates transferrable local model updates to construct a generalisable global feature embedding model without accessing local data so to preserve local privacy. This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any centralised data. Extensive experiments on ten Re-ID benchmarks show that FedReID achieves compelling generalisation performance beyond any locally trained models without using shared training data, whilst inherently protects the privacy of each local client. This is uniquely advantageous over contemporary Re-ID methods.