论文标题
道德,数据科学以及健康与公共服务:嵌入式偏见在预防青少年怀孕的政策方法中
Ethics, Data Science, and Health and Human Services: Embedded Bias in Policy Approaches to Teen Pregnancy Prevention
论文作者
论文摘要
背景:这项研究旨在评估芝加哥青少年预防倡议倡议的优化结果,鉴于政策中性和以政策为中心的方法将该计划交付给芝加哥市的高危青少年。方法:我们从公共资源中收集和编译了几个数据集,包括:芝加哥公共卫生诊所地点,两个公共卫生统计数据集,芝加哥的人口普查数据,芝加哥公立高中列表及其地点。无论过去的趋势和成果如何,我们的政策中立方法都将包括对学校和中心的资金和资源的平等分配。以政策为中心的方法将评估两个模型:首先,基于历史数据的预测模型的资金模型;其次,基于社区的经济和社会成果的资金模型。结果:这项研究的结果证实了我们的最初假设,即使从机器学习的角度优化了模型,但这些模型仍然可能会在现实世界应用中产生截然不同的结果。结论:当伦理和道德考虑因素扩展到算法优化以包含产出和社会优化时,决策过程的基础和哲学基础在知识发现过程中变得更加重要。
Background: This study aims to evaluate the Chicago Teen Pregnancy Prevention Initiative delivery optimization outcomes given policy-neutral and policy-focused approaches to deliver this program to at-risk teens across the City of Chicago. Methods: We collect and compile several datasets from public sources including: Chicago Department of Public Health clinic locations, two public health statistics datasets, census data of Chicago, list of Chicago public high schools, and their Locations. Our policy-neutral approach will consist of an equal distribution of funds and resources to schools and centers, regardless of past trends and outcomes. The policy-focused approaches will evaluate two models: first, a funding model based on prediction models from historical data; and second, a funding model based on economic and social outcomes for communities. Results: Results of this study confirms our initial hypothesis, that even though the models are optimized from a machine learning perspective, there is still possible that the models will produce wildly different results in the real-world application. Conclusions: When ethics and ethical considerations are extended beyond algorithmic optimization to encompass output and societal optimization, the foundation and philosophical grounding of the decision-making process become even more critical in the knowledge discovery process.