论文标题

可解释的AI的通用和模型的典范合成框架

A Generic and Model-Agnostic Exemplar Synthetization Framework for Explainable AI

论文作者

Barbalau, Antonio, Cosma, Adrian, Ionescu, Radu Tudor, Popescu, Marius

论文摘要

随着在实际应用中采用的深度学习方法的复杂性日益增长,越来越多地解释和解释这种方法的决策。在这项工作中,我们专注于可解释的AI,并提出了一个新颖的通用和模型无关的框架,用于合成输入示例,以最大程度地提高机器学习模型的所需响应。为此,我们使用一种生成模型,该模型是生成数据的先验,并使用具有动量更新的新型进化策略穿越其潜在空间。我们的框架是通用的,因为(i)它可以采用任何基础发电机,例如变异自动编码器(VAE)或生成对抗网络(GAN),(ii)可以应用于任何输入数据,例如图像,文本样本或表格数据。由于我们使用零级优化方法,因此我们旨在解释的机器学习模型是一个黑框,我们的框架是模型不可知的。我们强调的是,我们的新框架不需要访问或了解黑框模型的内部结构或训练数据。我们使用两个生成模型,即VAE和gan进行实验,并为各种数据格式,图像,文本和表格合成示例,以证明我们的框架是通用的。我们还在各种黑框模型上采用了原型合成框架,我们只知道输入和输出格式,表明它是模型 - 不可能的。此外,我们将我们的框架(可在https://github.com/antoniobarbalau/exemplar上获得)与基于梯度下降的模型-Depentent方法进行比较,证明我们的框架在较短的计算时间中获得了同样好的示例。

With the growing complexity of deep learning methods adopted in practical applications, there is an increasing and stringent need to explain and interpret the decisions of such methods. In this work, we focus on explainable AI and propose a novel generic and model-agnostic framework for synthesizing input exemplars that maximize a desired response from a machine learning model. To this end, we use a generative model, which acts as a prior for generating data, and traverse its latent space using a novel evolutionary strategy with momentum updates. Our framework is generic because (i) it can employ any underlying generator, e.g. Variational Auto-Encoders (VAEs) or Generative Adversarial Networks (GANs), and (ii) it can be applied to any input data, e.g. images, text samples or tabular data. Since we use a zero-order optimization method, our framework is model-agnostic, in the sense that the machine learning model that we aim to explain is a black-box. We stress out that our novel framework does not require access or knowledge of the internal structure or the training data of the black-box model. We conduct experiments with two generative models, VAEs and GANs, and synthesize exemplars for various data formats, image, text and tabular, demonstrating that our framework is generic. We also employ our prototype synthetization framework on various black-box models, for which we only know the input and the output formats, showing that it is model-agnostic. Moreover, we compare our framework (available at https://github.com/antoniobarbalau/exemplar) with a model-dependent approach based on gradient descent, proving that our framework obtains equally-good exemplars in a shorter computational time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源