论文标题
时间一致的网络的链接预测
Link Prediction for Temporally Consistent Networks
论文作者
论文摘要
动态网络具有内在的结构,计算和多学科优势。链接预测估计动态网络中的下一个关系。但是,在当前的链接预测方法中,仅考虑两分或非双分部分,但又考虑了均匀的网络。使用邻接矩阵代表动态发展的网络限制了从异质,稀疏或形成网络中分析学习的能力。在异质网络的情况下,很难使用二进制值矩阵建模所有网络状态。另一方面,稀疏或当前形成的网络有许多缺失的边缘,这些边缘被表示为零,因此引入了类不平衡或噪声。我们提出了一个时间参数化的矩阵(TP-Matrix),并在经验上证明了其在非双方,异质网络中的有效性。此外,我们提出了一个预测影响指数,以衡量节点在N度型社区的时间空间上的向后和前瞻性最大化的提升或减少预测影响。我们进一步提出了一种新的方法,即作为时间参数化网络模型(TPNM)代表异质时间发展活动。新方法可靠地使活动可以作为网络的形式表示,从而有可能启发新的链接预测应用程序,包括智能业务流程管理系统和上下文感知的工作流程引擎。我们在不同网络系统的四个数据集上评估了模型。我们提出的结果表明,在动态发展的网络中捕获和保留时间关系方面,提出的模型更有效。我们还表明,我们的模型的性能要比对时间进化敏感的网络的最新链接预测结果更好。
Dynamic networks have intrinsic structural, computational, and multidisciplinary advantages. Link prediction estimates the next relationship in dynamic networks. However, in the current link prediction approaches, only bipartite or non-bipartite but homogeneous networks are considered. The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks. In the case of a heterogeneous network, modeling all network states using a binary-valued matrix can be difficult. On the other hand, sparse or currently forming networks have many missing edges, which are represented as zeros, thus introducing class imbalance or noise. We propose a time-parameterized matrix (TP-matrix) and empirically demonstrate its effectiveness in non-bipartite, heterogeneous networks. In addition, we propose a predictive influence index as a measure of a node's boosting or diminishing predictive influence using backward and forward-looking maximization over the temporal space of the n-degree neighborhood. We further propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model (TPNM). The new method robustly enables activities to be represented as a form of a network, thus potentially inspiring new link prediction applications, including intelligent business process management systems and context-aware workflow engines. We evaluated our model on four datasets of different network systems. We present results that show the proposed model is more effective in capturing and retaining temporal relationships in dynamically evolving networks. We also show that our model performed better than state-of-the-art link prediction benchmark results for networks that are sensitive to temporal evolution.