论文标题
从$ a_1 $到$ a_ \ infty $:某些最大运营商的新混合不平等现象
From $A_1$ to $A_\infty$: New mixed inequalities for certain maximal operators
论文作者
论文摘要
在本文中,我们证明了与年轻功能相关的最大运算符的混合不平等,这是对\ cite {berra}中建立的猜想的改进。具体而言,给定$ r \ geq 1 $,$ u \ in a_1 $,$ v^r \ in A_ \ infty $和某些属性的年轻函数$φ$,我们有这种不平等 \ [uv^r \ left(\ left \ {x \ in \ mathbb {r}^n:\ frac {m_或c \ int _ {\ mathbb {r}^n}φ\ left(\ frac {| f(x)|} {t} {t} \ right)u(x)v^r(x)\,dx \,dx \]持有每个正$ t $。相关运算符$ \ frac {m_φ(fv)(x)} {m_φv(x)} $似乎是一个足够的扩展,当$ v^r \ in A_ \ infty $中,因为当我们假设我们在a_1 $中假设$ v^r \ in a_1 $,我们可以替换$ v $ $ v $ pred $ v $ pret a $ m_ pret a $ m_ m m mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm m m imm m m_ \ cite {berra-carena-pradolini(mn)}。 作为应用程序,我们进一步展示并证明了通用分数最大运算符$ m_ {γ,φ} $的混合不平等,其中$ 0 <γ<n $和$φ$是$ l \ log l log l $ type的年轻函数。
In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in \cite{Berra}. Concretely, given $r\geq 1$, $u\in A_1$, $v^r\in A_\infty$ and a Young function $Φ$ with certain properties, we have that inequality \[uv^r\left(\left\{x\in \mathbb{R}^n: \frac{M_Φ(fv)(x)}{M_Φv(x)}>t\right\}\right)\leq C\int_{\mathbb{R}^n}Φ\left(\frac{|f(x)|}{t}\right)u(x)v^r(x)\,dx\] holds for every positive $t$. The involved operator $\frac{M_Φ(fv)(x)}{M_Φv(x)}$ seems to be an adequate extension when $v^r\in A_\infty$, since when we assume $v^r\in A_1$ we can replace $M_Φv$ by $v$, yielding a mixed inequality for $M_Φ$ proved in \cite{Berra-Carena-Pradolini(MN)}. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator $M_{γ,Φ}$, where $0<γ<n$ and $Φ$ is a Young function of $L\log L$ type.