论文标题
间隔分区空间上的扩散:bertoin的$ {\ tt bes} _0(d)$,$ d \ in(0,1)$的构造
Diffusions on a space of interval partitions: construction from Bertoin's ${\tt BES}_0(d)$, $d\in(0,1)$
论文作者
论文摘要
在1990年,贝托因(Bertoin)在0到1之间的贝塞尔(Bessel)过程的框架中构建了一个值值的马尔可夫过程。在本文中,我们在间隔分区的空间中表示此过程。我们表明,这是最近和由Forman,Pal,Rizzolo和Winkel独立引入的一类间隔分区扩散的成员,它使用与Spectralitally stable稳定的Lévy工艺完全不同的结构,其索引在1和2之间,并在1到2之间标记为跳跃,并在$ -2 $和0 $ -2 $和0 $ -2 $和0的平方Bessel bessel方面标记。
In 1990, Bertoin constructed a measure-valued Markov process in the framework of a Bessel process of dimension between 0 and 1. In the present paper, we represent this process in a space of interval partitions. We show that this is a member of a class of interval partition diffusions introduced recently and independently by Forman, Pal, Rizzolo and Winkel using a completely different construction from spectrally positive stable Lévy processes with index between 1 and 2 and with jumps marked by squared Bessel excursions of a corresponding dimension between $-2$ and 0.