论文标题
Sriro $ _3 $中的奇怪的半学动力学
Strange semimetal dynamics in SrIrO$_3$
论文作者
论文摘要
电子相关性,多轨道激发和强旋转轨道耦合的相互作用是量子材料中新物质状态的肥沃地。在这里,我们报告了来自半金属钙钛矿薄膜的动量分辨电荷动力学的共聚焦拉曼散射研究$ \ mathbf {sriro_3} $。我们证明,以宽连续性为特征的电荷动力学在边缘费米液体现象学方面得到很好的描述。此外,在广泛的温度状态下,反向散射时间均适用于靠近Planckian限制$ \ MATHBF {τ^{ - 1} _ {\ hbar} = k _ {\ rm B} t/\ hbar} $。因此,$ \ mathbf {sriro_3} $是一个半金属多频段系统,与例如铜层超导体一样相关。通过利用偏振电子拉曼散射的动量空间选择性,可以规避具有截然不同的迁移率的多波段系统中电荷动力学的通常挑战。孔和电子选票的拉曼响应都显示出一种电子连续体,延伸远远超过1000 \ iCm($ \ sim $ 125 meV),比在常规费米液体中创建粒子孔对的相位允许的允许大得多。在记忆函数形式主义的框架中分析这一响应,我们能够提取两种类型的电荷载体的频率散射率和质量增强因子,这又使我们能够确定载体依赖性的迁移率和电阻率。结果与运输测量非常一致,并证明了这种方法研究多波段系统中电荷动态的潜力。
The interplay of electronic correlations, multi-orbital excitations, and strong spin-orbit coupling is a fertile ground for new states of matter in quantum materials. Here, we report on a confocal Raman scattering study of momentum-resolved charge dynamics from a thin film of semimetallic perovskite $\mathbf{SrIrO_3}$. We demonstrate that the charge dynamics, characterized by a broad continuum, is well described in terms of the marginal Fermi liquid phenomenology. In addition, over a wide temperature regime, the inverse scattering time is for all momenta close to the Planckian limit $\mathbf{τ^{-1}_{\hbar}=k_{\rm B} T/\hbar}$. Thus, $\mathbf{SrIrO_3}$ is a semimetallic multi-band system that is as correlated as, for example, the cuprate superconductors. The usual challenge to resolve the charge dynamics in multi-band systems with very different mobilities is circumvented by taking advantage of the momentum space selectivity of polarized electronic Raman scattering. The Raman responses of both hole- and electron-pockets display an electronic continuum extending far beyond 1000\icm ($\sim$125 meV), much larger than allowed by the phase space for creating particle-hole pairs in a regular Fermi liquid. Analyzing this response in the framework of a memory function formalism, we are able to extract the frequency dependent scattering rate and mass enhancement factor of both types of charge carriers, which in turn allows us to determine the carrier-dependent mobilities and electrical resistivities. The results are well consistent with transport measurement and demonstrate the potential of this approach to investigate the charge dynamics in multi-band systems.