论文标题
通往循环时间派生的两条途径(Maxwell的$ \ Mathfrak E $重新审视)
Two paths towards circulation time derivative (Maxwell's $\mathfrak E$ revisited)
论文作者
论文摘要
移动和变形的闭合曲线,$ \ frac {\ mathrm {d}} {\ mathrm {d} t} t} \ oint \ oint \ boldsymbol {a} a} \ cdot \ councumit in Cumputive $ \ boldsymbol {a} $在移动且变形的闭合曲线上,$ \ frac {\ mathrm {d}} {\ mathrm {d} t} t} \ oint \ oint \ boldsymbol {a}两种方式,有或没有将时间导数带到整体符号下。作为一种副产品,计算表明,法拉第电磁诱导定律的概念化可能取决于采用了两种方法中的哪一种。提出的讨论为麦克斯韦(Maxwell)的电动性强度$ \ mathfrak e $ $ $ $ $ $ $ $(在他的论文的第598条中撰写)提供了意想不到的论点。
The time derivative of the circulation of a vector field $\boldsymbol{A}$ over a moving and deforming closed curve, $\frac {\mathrm{d}}{\mathrm{d} t}\oint \boldsymbol{A} \cdot \mathrm{d} \boldsymbol{r}$, is computed in two ways, with and without bringing the time derivative under the integral sign. As a by-product, the computations reveal that the conceptualization of Faraday's law of electromagnetic induction may depend on which of the two methods is employed. The discussion presented provides an unexpected argument in favor of Maxwell's mysterious choice for his electromotive intensity $\mathfrak E$, made in Article 598 of his Treatise.