论文标题

具有浓缩非线性的dirac方程孤立波的光谱稳定性和不稳定性

Spectral stability and instability of solitary waves of the Dirac equation with concentrated nonlinearity

论文作者

Boussaid, Nabile, Cacciapuoti, Claudio, Carlone, Raffaele, Comech, Andrew, Noja, Diego, Posilicano, Andrea

论文摘要

我们认为,非线性狄拉克方程与soler型非线性集中在一个点上,并详细研究了孤立波的线性化光谱。然后,我们考虑非线性的两种不同的扰动,它们破坏了$ \ Mathbf {su}(1,1)$ - 对称性:第一个保留和第二个打破奇偶校验对称性的。我们表明,打破$ \ mathbf {su}(1,1)$ - 对称性而不是平等对称性的扰动也保留了单个波浪的频谱稳定性。然后,我们考虑一种打破$ \ mathbf {su}(1,1)$ - 对称性和奇偶对称性的扰动,并表明这种扰动破坏了弱相对主义孤立的波的稳定性。发展中的不稳定性是由于嵌入式特征值$ \ pm2Ω\ mathrm {i} $的正面零件特征值的分叉所致。

We consider the nonlinear Dirac equation with Soler-type nonlinearity concentrated at one point and present a detailed study of the spectrum of linearization at solitary waves. We then consider two different perturbations of the nonlinearity which break the $\mathbf{SU}(1,1)$-symmetry: the first preserving and the second breaking the parity symmetry. We show that a perturbation which breaks the $\mathbf{SU}(1,1)$-symmetry but not the parity symmetry also preserves the spectral stability of solitary waves. Then we consider a perturbation which breaks both the $\mathbf{SU}(1,1)$-symmetry and the parity symmetry and show that this perturbation destroys the stability of weakly relativistic solitary waves. The developing instability is due to the bifurcations of positive-real-part eigenvalues from the embedded eigenvalues $\pm 2ω\mathrm{i}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源