论文标题
审查基于生物信号的大脑控制的车辆的最新技术
Review of the State-of-the-art on Bio-signal-based Brain-controlled Vehicles
论文作者
论文摘要
大脑控制的车辆(BCV)是一种已经建立的技术,通常是为残疾患者设计的。这篇综述着重于大脑控制车的最相关主题,尤其是考虑陆地BCV(例如,移动汽车,汽车模拟器,真实汽车,图形和游戏车)和空中BCV,也被命名为BCAV,也称为BCAV(例如,真实的四倍型,无人机,固定翅膀,固定翅膀,图形式式载架和eciplocral),例如ectrocraper ectractry(ectraft)。电解图和肌电图。例如,基于脑电图的算法检测大脑运动皮层区域的模式以进行意图检测,诸如事件与事件相关/事件相关的模式诸如与状态相关的同步,视觉上唤起电位,p300,以及生成的局部唤起式诱发的潜在模式。我们已经确定,所报道的最佳性能方法采用机器学习和人工智能优化方法,即支持向量机,神经网络,线性判别分析,K-Nearest邻居,K-Means,水滴优化和战争优化的混乱拖船优化。我们考虑了以下指标,以分析不同方法的效率:与统计分析的生物信号类型和组合,时间响应和准确性值。目前的工作提供了对过去十年的主要发现的广泛文献综述,表明该领域的未来观点。
Brain-controlled vehicle (BCV) is an already established technology usually designed for disabled patients. This review focuses on the most relevant topics on the brain controlling vehicles, especially considering terrestrial BCV (e.g., mobile car, car simulators, real car, graphical and gaming cars) and aerial BCV, also named BCAV (e.g., real quadcopter, drone, fixed wings, graphical helicopter and aircraft) controlled using bio-signals such as electroencephalogram (EEG), electrooculogram and electromyogram. For instance, EEG-based algorithms detect patterns from motor imaginary cortex area of the brain for intention detection, patterns like event related desynchronization/event related synchronization, state visually evoked potentials, P300, and generated local evoked potential patterns. We have identified that the reported best performing approaches employ machine learning and artificial intelligence optimization methods, namely support vector machine, neural network, linear discriminant analysis, k-nearest neighbor, k-means, water drop optimization and chaotic tug of war optimization optimization. We considered the following metrics to analyze the efficiency of the different methods: type and combination of bio-signals, time response, and accuracy values with the statistical analysis. The present work provides an extensive literature review of the key findings of previous ten years, indicating the future perspectives in the field.