论文标题
拓扑广告重力中的锥形缺陷和全息图
Conical defects and holography in topological AdS gravity
论文作者
论文摘要
我们研究沿缺陷沿每个点周围的缺陷固体角度的圆锥形缺陷。我们证明它们会导致对Lovelock标量的增量函数贡献,并通过两种方法计算贡献。然后,我们表明这些编成二次缺陷在较高维拓扑广告重力中以欧几里德式溶液的形式出现,这是Lovelock-Chern-Chern-Simons Gravity而不扭转的重力。该理论具有纯粹是A型的全息Weyl异常,与Lovelock标量成正比。使用该公式进行缺陷贡献,我们证明了codimension-e-e-e-evecimension二元性 - 连接缺陷分区功能与欧几里得签名中的shell shell动作之间的全息二元性。更具体地说,我们发现对数差异匹配,因为Lovelock-Chern-Simons动作精确地定位在Brane上。我们明确地证明了边界上的球形缺陷的二元性,该缺陷延伸成一个编成的双曲线棕褐色。对于消失的brane张力,几何形状是欧几里得广告空间的叶面,可提供对Ads-Rindler空间的一参数概括。
We study codimension-even conical defects that contain a deficit solid angle around each point along the defect. We show that they lead to a delta function contribution to the Lovelock scalar and we compute the contribution by two methods. We then show that these codimension-even defects appear as Euclidean brane solutions in higher dimensional topological AdS gravity which is Lovelock-Chern-Simons gravity without torsion. The theory possesses a holographic Weyl anomaly that is purely of type-A and proportional to the Lovelock scalar. Using the formula for the defect contribution, we prove a holographic duality between codimension-even defect partition functions and codimension-even brane on-shell actions in Euclidean signature. More specifically, we find that the logarithmic divergences match, because the Lovelock-Chern-Simons action localizes on the brane exactly. We demonstrate the duality explicitly for a spherical defect on the boundary which extends as a codimension-even hyperbolic brane into the bulk. For vanishing brane tension, the geometry is a foliation of Euclidean AdS space that provides a one-parameter generalization of AdS-Rindler space.