论文标题
边界辅助区域建议网络用于细胞核分割
Boundary-assisted Region Proposal Networks for Nucleus Segmentation
论文作者
论文摘要
细胞核分割是医学图像分析中的重要任务。但是,机器学习模型不能很好地表现,因为有大量拥挤的核。为了解决这个问题,现有方法通常诉诸精致的手工制作后处理策略;因此,它们容易受到后处理超参数的变化。因此,在本文中,我们设计了一个边界辅助区域建议网络(BRP-NET),该网络可实现强大的实例级核分割。首先,我们提出了一个新颖的任务感知功能编码(TAFE)网络,该网络有效提取各自的高质量特征,以进行语义分割和实例边界检测任务。这是通过仔细考虑两个任务之间的相关性和差异来实现的。其次,基于上述两个任务的预测,生成粗核建议。第三,这些建议被馈送为分割网络以进行更准确的预测。实验结果表明,BRP-NET的性能对后处理超参数的变化是可靠的。此外,BRP-NET可以在Kumar和CPM17数据集上实现最先进的性能。 BRP-NET的代码将在https://github.com/csccscccccscs/brpnet上发布。
Nucleus segmentation is an important task in medical image analysis. However, machine learning models cannot perform well because there are large amount of clusters of crowded nuclei. To handle this problem, existing approaches typically resort to sophisticated hand-crafted post-processing strategies; therefore, they are vulnerable to the variation of post-processing hyper-parameters. Accordingly, in this paper, we devise a Boundary-assisted Region Proposal Network (BRP-Net) that achieves robust instance-level nucleus segmentation. First, we propose a novel Task-aware Feature Encoding (TAFE) network that efficiently extracts respective high-quality features for semantic segmentation and instance boundary detection tasks. This is achieved by carefully considering the correlation and differences between the two tasks. Second, coarse nucleus proposals are generated based on the predictions of the above two tasks. Third, these proposals are fed into instance segmentation networks for more accurate prediction. Experimental results demonstrate that the performance of BRP-Net is robust to the variation of post-processing hyper-parameters. Furthermore, BRP-Net achieves state-of-the-art performances on both the Kumar and CPM17 datasets. The code of BRP-Net will be released at https://github.com/csccsccsccsc/brpnet.