论文标题

自子植入钨中的纳米级晶格菌株

Nanoscale lattice strains in self-ion implanted tungsten

论文作者

Phillips, N. W., Yu, H., Das, S., Yang, D., Mizohata, K., Liu, W., Xu, R., Harder, R. J., Hofmann, F.

论文摘要

通过中子照射对材料特性的修饰进行全面了解对于未来裂变和融合功率反应器的设计很重要。自动植入通常用于模仿中子辐照损害,但是一个有趣的问题涉及离子能量对所得损伤结构的影响。随着植入能量的降低,植入层的厚度减少了,在明显的难题中减少了:是否试图匹配中子辐照过程中产生的主要的原子原子能量,或在更高的能量下植入植入物,从而产生较厚的损伤层?在这里,我们通过测量两个离子植入能的全应变张量,即自动植入钨中的2 MeV和20 MeV,这是第一壁的关键材料和融合反应器的转移器的关键材料。证明2 MeV和20个MEV植入样品的比较会导致类似的晶格肿胀。多反射Bragg相干衍射成像(MBCDI)表明,植入诱导的菌株实际上在纳米级是异质的,这表明缺陷的分布不均匀,这种观察结果并未被微型光束Laue衍射所捕获。在表面上,MBCDI和高分辨率电子背裂纹衍射(HR-EBSD)应变测量在应变分布的这种聚类/不均匀性方面非常吻合。但是,MBCDI表明样品中较大深度的异质性比表面大得多。这种技术的组合提供了一种有力的方法,可以详细研究由离子轰击引起的微结构损害,以及更普遍地研究微量无关的应变现象,这些现象是通过任何其他技术无法访问的。

Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation damage, however an interesting question concerns the effect of ion energy on the resulting damage structures. The reduction in the thickness of the implanted layer as the implantation energy is reduced results in the significant quandary: Does one attempt to match the primary knock-on atom energy produced during neutron irradiation or implant at a much higher energy, such that a thicker damage layer is produced? Here we address this question by measuring the full strain tensor for two ion implantation energies, 2 MeV and 20 MeV in self-ion implanted tungsten, a critical material for the first wall and divertor of fusion reactors. A comparison of 2 MeV and 20 MeV implanted samples is shown to result in similar lattice swelling. Multi-reflection Bragg coherent diffractive imaging (MBCDI) shows that implantation induced strain is in fact heterogeneous at the nanoscale, suggesting that there is a non-uniform distribution of defects, an observation that is not fully captured by micro-beam Laue diffraction. At the surface, MBCDI and high-resolution electron back-scattered diffraction (HR-EBSD) strain measurements agree quite well in terms of this clustering/non-uniformity of the strain distribution. However, MBCDI reveals that the heterogeneity at greater depths in the sample is much larger than at the surface. This combination of techniques provides a powerful method for detailed investigation of the microstructural damage caused by ion bombardment, and more generally of strain related phenomena in microvolumes that are inaccessible via any other technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源