论文标题
至少$ k $ th-order和rényi生成对抗网络
Least $k$th-Order and Rényi Generative Adversarial Networks
论文作者
论文摘要
我们研究了信息理论措施的参数化家族,以推广生成对抗网络(GAN)的损失函数,以提高性能。首先引入了一种新的发电机损耗功能,称为最小值$ k $ th-tord gan(l $ k $ gan),通过使用$ k $ th订单的绝对错误失真度量($ k \ geq 1 $)(在$ k = 2 $时恢复LSGAN损失功能),从而概括了最小二乘gans gans gans(lsgans)。结果表明,在(不受约束的)最佳判别器下,将此广义损耗函数最小化,相当于最小化$ k $ th-th阶Pearson-vajda Divergence。接下来,另一种新型的GAN发电机损耗函数是根据Rényi跨透镜功能$α> 0 $,$α\ neq 1 $提出的。证明这种以Rényi为中心的广义损耗函数可证明将原始的GAN损耗函数降低为$α\ to1 $,它保留了基于Jensen-RényiDivergence所满足的平衡点,这是Jensen-RényiDivergence,这是Jensen-Shannon Divergence的自然扩展。 实验结果表明,在DCGAN和StyleGan体系结构下,提出的损失功能分别赋予参数$ k $和$ $α$的额外自由度,适用于MNIST和CELEBA数据集。更具体地说,实验表明,通过FréchetInception距离(FID)得分和训练稳定性测量的生成图像的质量有所改进。虽然在这项研究中将其应用于gans,但提出的方法是通用的,可以用于信息理论的其他应用中,例如人工智能中的公平或隐私问题。
We investigate the use of parametrized families of information-theoretic measures to generalize the loss functions of generative adversarial networks (GANs) with the objective of improving performance. A new generator loss function, called least $k$th-order GAN (L$k$GAN), is first introduced, generalizing the least squares GANs (LSGANs) by using a $k$th order absolute error distortion measure with $k \geq 1$ (which recovers the LSGAN loss function when $k=2$). It is shown that minimizing this generalized loss function under an (unconstrained) optimal discriminator is equivalent to minimizing the $k$th-order Pearson-Vajda divergence. Another novel GAN generator loss function is next proposed in terms of Rényi cross-entropy functionals with order $α>0$, $α\neq 1$. It is demonstrated that this Rényi-centric generalized loss function, which provably reduces to the original GAN loss function as $α\to1$, preserves the equilibrium point satisfied by the original GAN based on the Jensen-Rényi divergence, a natural extension of the Jensen-Shannon divergence. Experimental results indicate that the proposed loss functions, applied to the MNIST and CelebA datasets, under both DCGAN and StyleGAN architectures, confer performance benefits by virtue of the extra degrees of freedom provided by the parameters $k$ and $α$, respectively. More specifically, experiments show improvements with regard to the quality of the generated images as measured by the Fréchet Inception Distance (FID) score and training stability. While it was applied to GANs in this study, the proposed approach is generic and can be used in other applications of information theory to deep learning, e.g., the issues of fairness or privacy in artificial intelligence.