论文标题

骨晶体组的零范围相互作用的模型

Models of zero-range interaction for the bosonic trimer at unitarity

论文作者

Michelangeli, Alessandro

论文摘要

我们介绍了与物理相关的量子哈密顿量的数学结构,用于三体系统,该系统由相同的玻色子组成,由零范围的两体相互作用相互耦合。对于大部分演示文稿,将考虑无限散射长度(单位性制度)。该主题在数学文献中有几个前体。我们通过将最小操作员的自动偶会扩展的操作者理论结构限制为通过将自由的哈密顿量限制为在巧合超平面附近消失的波动函数而获得的最小操作员的自相会扩展:所有扩展是在空间配置上精确支持的粒子上粒子上粒子上彼此顶部的空间配置的所有扩展。其中,我们通过在操作员构造中实施与物理相关的相关方法选择了正式的物理参数所暗示的特定的短尺度结构,这些结构在零范围方法的物理文献中无处不在。这是通过在不同阶段应用的自偶会扩展方案进行的。我们生成一类规范模型,我们还为其分析了负结合状态的结构。波体性和零范围组合在一起,使这种规范模型显示了典型的托马斯和埃菲莫夫光谱,即能量特征值序列累积到减去无穷大和零。我们还讨论一种正规化类型,可以防止这种光谱不稳定,同时保留有效的短尺寸模式。除了操作员资格外,我们还介绍了相关的能量二次形式。我们构建了分析,以阐明操作者理论结构的某些步骤,这些步骤众所周知,这些步骤是为了正确识别自我接触域的正确识别。

We present the mathematical construction of the physically relevant quantum Hamiltonians for a three-body systems consisting of identical bosons mutually coupled by a two-body interaction of zero range. For a large part of the presentation, infinite scattering length will be considered (the unitarity regime). The subject has several precursors in the mathematical literature. We proceed through an operator-theoretic construction of the self-adjoint extensions of the minimal operator obtained by restricting the free Hamiltonian to wave-functions that vanish in the vicinity of the coincidence hyperplanes: all extensions thus model an interaction precisely supported at the spatial configurations where particles come on top of each other. Among them, we select the physically relevant ones, by implementing in the operator construction the presence of the specific short-scale structure suggested by formal physical arguments that are ubiquitous in the physical literature on zero-range methods. This is done by applying at different stages the self-adjoint extension schemes a la Kre{\uı}n-Višik-Birman and a la von Neumann. We produce a class of canonical models for which we also analyse the structure of the negative bound states. Bosonicity and zero range combined together make such canonical models display the typical Thomas and Efimov spectra, i.e., sequence of energy eigenvalues accumulating to both minus infinity and zero. We also discuss a type of regularisation that prevents such spectral instability while retaining an effective short-scale pattern. Beside the operator qualification, we also present the associated energy quadratic forms. We structured our analysis so as to clarify certain steps of the operator-theoretic construction that are notoriously subtle for the correct identification of a domain of self-adjointness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源