论文标题
DGSAC:密度引导采样和共识
DGSAC: Density Guided Sampling and Consensus
论文作者
论文摘要
强大的多重模型拟合在许多计算机视觉应用中都起着至关重要的作用。与单个模型拟合问题不同,多模型拟合有其他挑战。未知数量的模型和Inlier Mouny量表是其中两个最重要的模型,通常使用地面真相或其他一些辅助信息提供了这些模型。寻求/基于聚类的方法至关重要地取决于产生的模型假设的质量。尽管基于偏好分析的指导抽样方法表现出了出色的性能,但它们在时间预算框架中运行,用户将时间作为合理的猜测。在本文中,我们偏离了寻求和时间预算框架的模式。我们提出了一个称为核残留密度(KRD)的概念,并将其应用于多模型拟合管道的各个组件。内核残留密度是嵌入式和异常值之间的关键区别。我们使用KRD指导并自动停止采样过程。在生成一组可以解释所有数据点的假设之后,采样过程就停止了。每个数据点都保持了解释分数,该数据点正在直接进行更新。我们提出了两种模型选择算法,一种基于最佳二次程序和贪婪。与寻求方法不同,我们的模型选择算法试图为数据中存在的每个真实结构找到一个代表性假设。我们在各种任务上评估了我们的方法(称为DGSAC),例如平面分割,运动分割,消失点估计,平面拟合到3D点云,线和圆形拟合,这表明了我们方法的有效性及其统一性。
Robust multiple model fitting plays a crucial role in many computer vision applications. Unlike single model fitting problems, the multi-model fitting has additional challenges. The unknown number of models and the inlier noise scale are the two most important of them, which are in general provided by the user using ground-truth or some other auxiliary information. Mode seeking/ clustering-based approaches crucially depend on the quality of model hypotheses generated. While preference analysis based guided sampling approaches have shown remarkable performance, they operate in a time budget framework, and the user provides the time as a reasonable guess. In this paper, we deviate from the mode seeking and time budget framework. We propose a concept called Kernel Residual Density (KRD) and apply it to various components of a multiple-model fitting pipeline. The Kernel Residual Density act as a key differentiator between inliers and outliers. We use KRD to guide and automatically stop the sampling process. The sampling process stops after generating a set of hypotheses that can explain all the data points. An explanation score is maintained for each data point, which is updated on-the-fly. We propose two model selection algorithms, an optimal quadratic program based, and a greedy. Unlike mode seeking approaches, our model selection algorithms seek to find one representative hypothesis for each genuine structure present in the data. We evaluate our method (dubbed as DGSAC) on a wide variety of tasks like planar segmentation, motion segmentation, vanishing point estimation, plane fitting to 3D point cloud, line, and circle fitting, which shows the effectiveness of our method and its unified nature.