论文标题
变异量子奇异值分解
Variational Quantum Singular Value Decomposition
论文作者
论文摘要
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值和KY Fan定理的变分原理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)学习单数矢量并输出相应的单数值。此外,我们对随机矩阵进行VQSVD的数值模拟及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了超出仅适用于Hermitian数据的常规协议以外的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
Singular value decomposition is central to many problems in engineering and scientific fields. Several quantum algorithms have been proposed to determine the singular values and their associated singular vectors of a given matrix. Although these algorithms are promising, the required quantum subroutines and resources are too costly on near-term quantum devices. In this work, we propose a variational quantum algorithm for singular value decomposition (VQSVD). By exploiting the variational principles for singular values and the Ky Fan Theorem, we design a novel loss function such that two quantum neural networks (or parameterized quantum circuits) could be trained to learn the singular vectors and output the corresponding singular values. Furthermore, we conduct numerical simulations of VQSVD for random matrices as well as its applications in image compression of handwritten digits. Finally, we discuss the applications of our algorithm in recommendation systems and polar decomposition. Our work explores new avenues for quantum information processing beyond the conventional protocols that only works for Hermitian data, and reveals the capability of matrix decomposition on near-term quantum devices.