论文标题

密闭聚合物网络的统计力学

Statistical Mechanics of Confined Polymer Networks

论文作者

Duplantier, Bertrand, Guttmann, Anthony J

论文摘要

我们展示了$ d $二维聚合物网络的临界行为的理论如何推广到超过超级平面的网络情况。这特别是在桥梁配置中包含单个聚合物链的情况。我们进一步定义了多桥网络,其中有几个顶点在本地桥梁配置中。我们考虑所有普通,混合和特殊表面转变的情况,以及由自我避免步行或互相避免步行的聚合物链,或者在Tricricition $θ$ - 点上。在$θ$ - 点的情况下,概括了良好的情况,我们将简单桥的关键指数($γ_b^θ$)与末端连接的拱门的关键指数,$γ_{11}^θ,$与$γ_{11}^θ,$,以及相关长度$ quent $ ungention $ ungentation $ ungentation $ un the case of the special transition, we find $γ_b^Θ({\rm sp}) = \frac{1}{2}[γ_{11}^Θ({\rm sp})+γ_{11}^Θ]+ν^Θ.$ For general networks, the explicit expression of configurational exponents then naturally involve bulk and surface exponents for多个随机路径。在二维中,我们从统一的角度描述了它们的欧几里得指数,使用liouville量子重力(LQG)中的Schramm-loewner进化(SLE)以及欧几里得和LQG缩放尺寸之间所谓的KPZ关系。这是在普通,混合和特殊的表面转换以及$θ$ - 点的情况下完成的。我们为其中一些结果提供了令人信服的数值证据。

We show how the theory of the critical behaviour of $d$-dimensional polymer networks of arbitrary topology can be generalized to the case of networks confined by hyperplanes. This in particular encompasses the case of a single polymer chain in a bridge configuration. We further define multi-bridge networks, where several vertices are in local bridge configurations. We consider all cases of ordinary, mixed and special surface transitions, and polymer chains made of self-avoiding walks, or of mutually-avoiding walks, or at the tricritical $Θ$-point. In the $Θ$-point case, generalising the good-solvent case, we relate the critical exponent for simple bridges, $γ_b^Θ$, to that of terminally-attached arches, $γ_{11}^Θ,$ and to the correlation length exponent $ν^Θ.$ We find $γ_b^Θ = γ_{11}^Θ+ν^Θ.$ In the case of the special transition, we find $γ_b^Θ({\rm sp}) = \frac{1}{2}[γ_{11}^Θ({\rm sp})+γ_{11}^Θ]+ν^Θ.$ For general networks, the explicit expression of configurational exponents then naturally involve bulk and surface exponents for multiple random paths. In two-dimensions, we describe their Euclidean exponents from a unified perspective, using Schramm-Loewner Evolution (SLE) in Liouville quantum gravity (LQG), and the so-called KPZ relation between Euclidean and LQG scaling dimensions. This is done in the case of ordinary, mixed and special surface transitions, and of the $Θ$-point. We provide compelling numerical evidence for some of these results both in two- and three-dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源