论文标题

在层次结构Schrödinger类型运算符上

On the spectrum of the hierarchical Schrödinger type operators

论文作者

Bendikov, Alexander, Grigor'yan, Alexander, Molchanov, Stanislav

论文摘要

本文的目的是对schrödinger类型运算符的光谱分析$ h = l+v $,taibleson-vladimirov乘数的扰动$ l = \ mathfrak {d}^α$ a潜在的$ v $。假设$ v $属于某些类别的电位,我们表明,$ h $的频谱的离散部分可能包含负能量,它也出现在$ l $的频谱差距中。我们将在两个部分中将$ h $的频谱分成:高能量部分,其中包含特征值,这些特征值对应于潜在的$ V,$和低能部分的特征函数,该函数位于某些有界的Schrödinger-type操作员上,该操作员在Dyson等级Lattice上演奏。我们特别注意稀疏电位的类别。在这种情况下,我们获得了$ h $的精确光谱渐进性,只要位置之间的距离顺序倾向于足够快地无限。我们还获得了有关$ h $的本地化理论的某些结果,但要受(非共性)随机潜在$ v $。例子说明了我们的方法。

The goal of this paper is the spectral analysis of the Schrödinger type operator $H=L+V$, the perturbation of the Taibleson-Vladimirov multiplier $L=\mathfrak{D}^α$ by a potential $V$. Assuming that $V$ belongs to a certain class of potentials we show that the discrete part of the spectrum of $H$ may contain negative energies, it also appears in the spectral gaps of $L$. We will split the spectrum of $H$ in two parts: high energy part containing eigenvalues which correspond to the eigenfunctions located on the support of the potential $V,$ and low energy part which lies in the spectrum of certain bounded Schrödinger-type operator acting on the Dyson hierarchical lattice. We pay special attention to the class of sparse potentials. In this case we obtain precise spectral asymptotics for $H$ provided the sequence of distances between locations tends to infinity fast enough. We also obtain certain results concerning localization theory for $H$ subject to (non-ergodic) random potential $V$. Examples illustrate our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源