论文标题
通过混合贝叶斯优化和调整规则来自动设置DNN超参数
Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian Optimization and Tuning Rules
论文作者
论文摘要
由于其出色的结果,深度学习技术在工业和研究环境中起着越来越重要的作用。但是,如果手动设置大量的超参数,则可能会导致错误。最先进的超参数调整方法是网格搜索,随机搜索和贝叶斯优化。前两种方法很昂贵,因为它们分别尝试了超参数的所有可能组合和随机组合。相反,贝叶斯优化构建了目标函数的替代模型,使用高斯过程回归量化了替代物中的不确定性,并使用采集函数来决定在何处采样新的超参数集。这项工作面临超参数优化(HPO)领域。目的是改善应用于深神经网络的贝叶斯优化。为此,我们构建了一种新算法,用于评估和分析网络在培训和验证集中的结果,并使用一组调整规则添加新的超参数和/或减少超参数搜索空间以选择更好的组合。
Deep learning techniques play an increasingly important role in industrial and research environments due to their outstanding results. However, the large number of hyper-parameters to be set may lead to errors if they are set manually. The state-of-the-art hyper-parameters tuning methods are grid search, random search, and Bayesian Optimization. The first two methods are expensive because they try, respectively, all possible combinations and random combinations of hyper-parameters. Bayesian Optimization, instead, builds a surrogate model of the objective function, quantifies the uncertainty in the surrogate using Gaussian Process Regression and uses an acquisition function to decide where to sample the new set of hyper-parameters. This work faces the field of Hyper-Parameters Optimization (HPO). The aim is to improve Bayesian Optimization applied to Deep Neural Networks. For this goal, we build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets and use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper-parameter search space to select a better combination.