论文标题
紧密的相对$ t $ designs在超级皮中的两个外壳上,以及哈恩和赫尔米特多项式
Tight relative $t$-designs on two shells in hypercubes, and Hahn and Hermite polynomials
论文作者
论文摘要
$ n $ d $ dimensional HyperCube $ \ MATHCAL {Q} _n $中的相对$ t $ -Designs等同于加权的常规$ t $ - t $平衡的设计,通过允许多个块尺寸和权重允许使用多个块尺寸的设计。在最近的关于两个同心球体上的紧密欧几里得$ t $ designs的研究中,部分原因是,在本文中,我们讨论了在两个壳上支持的$ \ Mathcal {q} _n $中的紧密相对$ t $ - designs。我们在温和的情况下表明,这种相对的$ t $设计可以诱导与两个纤维相干构型的结构。此外,从这种结构中,我们推断出Hahn高几何数量多项式的多项式的多项式必须只具有整体的简单零。 Terwilliger代数是建立这些结果的主要工具。通过明确评估Hahn多项式零在适当的极限过程中脱份为Hermite多项式时的行为,我们证明了一个定理,该定理表明,非平凡的相对$ t $ t $ designs在$ \ \ \ \ natercal {q} _n $上支持的$ t $ t $ the $ t $ t $ t $ t $ t $ t $ t $很少。
Relative $t$-designs in the $n$-dimensional hypercube $\mathcal{Q}_n$ are equivalent to weighted regular $t$-wise balanced designs, which generalize combinatorial $t$-$(n,k,λ)$ designs by allowing multiple block sizes as well as weights. Partly motivated by the recent study on tight Euclidean $t$-designs on two concentric spheres, in this paper we discuss tight relative $t$-designs in $\mathcal{Q}_n$ supported on two shells. We show under a mild condition that such a relative $t$-design induces the structure of a coherent configuration with two fibers. Moreover, from this structure we deduce that a polynomial from the family of the Hahn hypergeometric orthogonal polynomials must have only integral simple zeros. The Terwilliger algebra is the main tool to establish these results. By explicitly evaluating the behavior of the zeros of the Hahn polynomials when they degenerate to the Hermite polynomials under an appropriate limit process, we prove a theorem which gives a partial evidence that the non-trivial tight relative $t$-designs in $\mathcal{Q}_n$ supported on two shells are rare for large $t$.