论文标题
在非药物干预下对伊利诺伊州的COVID-19模型建模
Modeling COVID-19 dynamics in Illinois under non-pharmaceutical interventions
论文作者
论文摘要
我们介绍了美国伊利诺伊州伊利诺伊州Covid-19的模型,以捕获最终发行的全职订单和场景的实施。我们使用非马克维亚的感染模型,该模型能够处理长时间和可变的时间延迟而无需更改模型拓扑。贝叶斯对模型参数的估计是使用马尔可夫链蒙特卡洛(MCMC)方法进行的。该框架使我们能够以统一的方式处理所有可用的输入信息,包括流行病的先前发表的参数和可用的本地数据。为了准确地模拟死亡以及对医疗保健系统的需求,我们校准了Covid-19患者对总医院和医院死亡以及医院和ICU床居住的预测。我们不仅将此模型应用于整个州,还将其子区域应用于该模型,以说明人口规模和密度的广泛差异。如果没有事先有关非药物干预措施(NPI)的信息,该模型独立地再现了一种缓解趋势,与Google和UNACAST报道的与移动性数据紧密相匹配。该模型的远期预测提供了对峰位置和严重程度的强大估计,还可以预测释放在家中订单的区域依赖性结果。由此产生的高度限制的流行叙事能够估算其看不见的进展,并为可持续监测和控制流行病的场景提供信息。
We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable time delays without changing its model topology. Bayesian estimation of model parameters is carried out using Markov Chain Monte Carlo (MCMC) methods. This framework allows us to treat all available input information, including both the previously published parameters of the epidemic and available local data, in a uniform manner. To accurately model deaths as well as demand on the healthcare system, we calibrate our predictions to total and in-hospital deaths as well as hospital and ICU bed occupancy by COVID-19 patients. We apply this model not only to the state as a whole but also its sub-regions in order to account for the wide disparities in population size and density. Without prior information on non-pharmaceutical interventions (NPIs), the model independently reproduces a mitigation trend closely matching mobility data reported by Google and Unacast. Forward predictions of the model provide robust estimates of the peak position and severity and also enable forecasting the regional-dependent results of releasing Stay-at-Home orders. The resulting highly constrained narrative of the epidemic is able to provide estimates of its unseen progression and inform scenarios for sustainable monitoring and control of the epidemic.