论文标题
着色$(p_5,\ text {gem})$ - 免费图形,$δ-1 $颜色
Coloring $(P_5, \text{gem})$-free graphs with $Δ-1$ colors
论文作者
论文摘要
Borodin-Kostochka猜想指出,对于图$ g $,如果$δ(g)\ geq 9 $和$ω(g)\leqΔ(g)-1 $,则$χ(g)\leqΔ(g)-1 $。我们证明了$(p_5,\ text {gem})$的borodin-kostochka猜想 - 免费图形,即没有诱导的$ p_5 $且没有诱导$ k_1 \ vee p_4 $的图形。
The Borodin-Kostochka Conjecture states that for a graph $G$, if $Δ(G) \geq 9$ and $ω(G) \leq Δ(G)-1$, then $χ(G)\leqΔ(G) -1$. We prove the Borodin-Kostochka Conjecture for $(P_5, \text{gem})$-free graphs, i.e., graphs with no induced $P_5$ and no induced $K_1\vee P_4$.