论文标题
MultixNet:多类多阶段多模式运动预测
MultiXNet: Multiclass Multistage Multimodal Motion Prediction
论文作者
论文摘要
自动驾驶难题的关键部分之一是了解自动驾驶车辆(SDV)的周围环境,并预测这些周围环境将在不久的将来发生变化。为了解决此任务,我们提出了MultixNet,这是一种基于LIDAR传感器数据的端到端检测和运动预测方法。这种方法是在先前的工作基础上,通过处理多种流量参与者,添加了经过培训的第二阶段轨迹改进步骤,并在未来的Actor运动上产生多模式的概率分布,其中包括多个离散的交通行为和校准持续的持续位置不确定性。该方法是在几个城市的SDV机队收集的大规模现实世界数据上评估的,结果表明它的表现优于现有的最新方法。
One of the critical pieces of the self-driving puzzle is understanding the surroundings of a self-driving vehicle (SDV) and predicting how these surroundings will change in the near future. To address this task we propose MultiXNet, an end-to-end approach for detection and motion prediction based directly on lidar sensor data. This approach builds on prior work by handling multiple classes of traffic actors, adding a jointly trained second-stage trajectory refinement step, and producing a multimodal probability distribution over future actor motion that includes both multiple discrete traffic behaviors and calibrated continuous position uncertainties. The method was evaluated on large-scale, real-world data collected by a fleet of SDVs in several cities, with the results indicating that it outperforms existing state-of-the-art approaches.