论文标题
最大纠缠的相关集
Maximally entangled correlation sets
论文作者
论文摘要
我们研究了最大纠缠状态的作用产生的一组量子相关。我们表明,这种相关性在其自身的凸面上是密集的。结果,我们表明这些相关性在同步量子相关性的集合中是密集的。我们介绍了相关集的角落的概念,并表明每个局部或非信号相关性都可以实现为同步局部或非信号相关性的一角。我们为其他相关集提供部分结果。
We study the set of quantum correlations generated by actions on maximally entangled states. We show that such correlations are dense in their own convex hull. As a consequence, we show that these correlations are dense in the set of synchronous quantum correlations. We introduce the concept of corners of correlation sets and show that every local or nonsignalling correlation can be realized as the corner of a synchronous local or nonsignalling correlation. We provide partial results for other correlation sets.