论文标题
叶面的各向同性组:局部情况
The isotropy group of a foliation: the local case
论文作者
论文摘要
鉴于$(\ c^n,0)$的全态单数叶子$ \ fa $,我们将$ iso(\ fa)$定义为$(\ c^n,0)$保留$ \ fa $:$ iso(\ fa)的biholomorthisms of Biholomorthisms gent diff(\ c^n,0)\,| \,φ^*(\ fa)= \ fa \} $。 $ ISO(\ fa)$的普通亚组,将每片$ \ fa $的每片叶子发送到本身中,将表示为$ fix(\ fa)$。相应的正式生物形态组将分别表示为$ \ wh {iso}(\ fa)$和$ \ wh {fix}(\ fa)$。本文的目的是研究商$ iso(\ fa)/fix(\ fa)$和$ \ wh {fix}(fix}(\ fa)/\ wh {fix}(\ fa)$,主要是在Codimension One Foliation的情况下。
Given a holomorphic singular foliation $\fa$ of $(\C^n,0)$ we define $Iso(\fa)$ as the group of germs of biholomorphisms on $(\C^n,0)$ preserving $\fa$: $Iso(\fa)=\{Φ\in Diff(\C^n,0)\,|\,Φ^*(\fa)=\fa\}$. The normal subgroup of $Iso(\fa)$, of biholomorphisms sending each leaf of $\fa$ into itself, will be denoted as $Fix(\fa)$. The corresponding groups of formal biholomorphisms will be denoted as $\wh{Iso}(\fa)$ and $\wh{Fix}(\fa)$, respectively. The purpose of this paper will be to study the quotients $Iso(\fa)/Fix(\fa)$ and $\wh{Fix}(\fa)/\wh{Fix}(\fa)$, mainly in the case of codimension one foliation.