论文标题
条纹抗铁磁基理想三角晶格的基态$ _2 $
Stripe antiferromagnetic ground state of ideal triangular lattice KErSe$_2$
论文作者
论文摘要
已经提出了稀土三角晶格材料作为研究沮丧的磁接地状态的良好平台。 Kerse $ _2 $带有Delafossite结构,包含完美的二维ER $^{3+} $由钾离子隔开的三角形层,意识到了这种理想的配置和诱人的研究。在这里,我们通过热容量和中子粉末衍射在Milikelvin温度下研究Kerse $ _2 $的磁性。热容量结果揭示了在零应用场中0.2 K处的磁过渡。该长距离顺序通过低于0.08 k的0.5 t的施加磁场抑制。中子粉末衍射表明,零场磁性结构订单的$ k =(\ frac {1} {2} {2},0,\ frac {1} {1} {2} {2} {2} {2} {2})$在Stripe Spin结构中。出乎意料的是,在有序状态下,ER的降低力矩为3.06(1)$μ_b$/er,并且在较高温度下的弥散性磁散射在有序状态下持续存在,可能表明磁波动。在应用场下收集的中子衍射显示了$ \ sim $ 0.5 t的元磁过渡,$ k $ =(0,0,0)和两个可能的结构,可能取决于所应用的场方向。第一个原理计算表明,零场条带自旋结构可以通过抗磁性三角晶格中的第一,第二和第三个邻居耦合来解释。
Rare earth triangular lattice materials have been proposed as a good platform for the investigation of frustrated magnetic ground states. KErSe$_2$ with the delafossite structure, contains perfect two-dimensional Er$^{3+}$ triangular layers separated by potassium ions, realizing this ideal configuration and inviting study. Here we investigate the magnetism of KErSe$_2$ at miliKelvin temperatures by heat capacity and neutron powder diffraction. Heat capacity results reveal a magnetic transition at 0.2 K in zero applied field. This long-range order is suppressed by an applied magnetic field of 0.5 T below 0.08 K. Neutron powder diffraction suggests that the zero-field magnetic structure orders with $k=(\frac{1}{2},0,\frac{1}{2})$ in a stripe spin structure. Unexpectedly, Er is found to have a reduced moment of 3.06(1) $μ_B$/Er in the ordered state and diffuse magnetic scattering, which originates at higher temperatures, is found to persist in the ordered state potentially indicating magnetic fluctuations. Neutron diffraction collected under an applied field shows a metamagnetic transition at $\sim$ 0.5 T to ferromagnetic order with $k$=(0,0,0) and two possible structures, which are likely dependent on the applied field direction. First principle calculations show that the zero field stripe spin structure can be explained by the first, second and third neighbor couplings in the antiferromagnetic triangular lattice.