论文标题

使用机器学习从二进制中子星星合并中检测引力波信号

Detection of gravitational-wave signals from binary neutron star mergers using machine learning

论文作者

Schäfer, Marlin B., Ohme, Frank, Nitz, Alexander H.

论文摘要

作为两个中子星的合并,它们会发出重力波,可能会通过地球结合检测器检测到。传统上,基于匹配的过滤算法已用于提取嵌入在噪声中的安静信号。我们介绍了一种基于神经网络的新型机器学习算法,该算法使用引力波检测器的时间序列应变数据来检测非旋转二进制二进制中子星星合并的信号。对于高级LIGO设计敏感性,我们的网络的平均敏感距离为130 MPC,以每月10次的假警报速率。与其他最先进的机器学习算法相比,我们发现对信号比率低于25的信号的敏感性提高了6倍。但是,这种方法尚未与传统的基于匹配的基于过滤的方法竞争。保守的估计表明,我们的算法平均引入信号到达和产生警报之间的延迟10.2 s。我们对我们的测试过程进行了确切的描述,该过程不仅可以应用于基于机器学习的算法,还可以应用于所有其他搜索算法。因此,我们提高了比较机器学习和经典搜索的能力。

As two neutron stars merge, they emit gravitational waves that can potentially be detected by earth bound detectors. Matched-filtering based algorithms have traditionally been used to extract quiet signals embedded in noise. We introduce a novel neural-network based machine learning algorithm that uses time series strain data from gravitational-wave detectors to detect signals from non-spinning binary neutron star mergers. For the Advanced LIGO design sensitivity, our network has an average sensitive distance of 130 Mpc at a false-alarm rate of 10 per month. Compared to other state-of-the-art machine learning algorithms, we find an improvement by a factor of 6 in sensitivity to signals with signal-to-noise ratio below 25. However, this approach is not yet competitive with traditional matched-filtering based methods. A conservative estimate indicates that our algorithm introduces on average 10.2 s of latency between signal arrival and generating an alert. We give an exact description of our testing procedure, which can not only be applied to machine learning based algorithms but all other search algorithms as well. We thereby improve the ability to compare machine learning and classical searches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源