论文标题

电感几何矩阵中间

Inductive Geometric Matrix Midranges

论文作者

Van Goffrier, Graham W., Mostajeran, Cyrus, Sepulchre, Rodolphe

论文摘要

在整个技术研究中,以对称阳性定位(SPD)矩阵表示的协方差数据是相互依存系统的有效描述符。 SPD矩阵的欧几里得分析虽然计算快速,但可能会导致对数据的偏斜甚至非物理的解释。 Riemannian方法以昂贵的特征值计算成本保留了SPD数据的几何结构。在本文中,我们提出了一种基于Thompson Metric的SPD数据无监督聚类的几何方法。该技术依赖于SPD数据的一种新颖的“电感中端”质心计算,该计算的性质被检查并在数值上确认。我们证明了将汤普森度量和电感中端掺入X均值和K-均值++聚类算法中。

Covariance data as represented by symmetric positive definite (SPD) matrices are ubiquitous throughout technical study as efficient descriptors of interdependent systems. Euclidean analysis of SPD matrices, while computationally fast, can lead to skewed and even unphysical interpretations of data. Riemannian methods preserve the geometric structure of SPD data at the cost of expensive eigenvalue computations. In this paper, we propose a geometric method for unsupervised clustering of SPD data based on the Thompson metric. This technique relies upon a novel "inductive midrange" centroid computation for SPD data, whose properties are examined and numerically confirmed. We demonstrate the incorporation of the Thompson metric and inductive midrange into X-means and K-means++ clustering algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源