论文标题

在线随机凸优化:Wasserstein距离变化

Online Stochastic Convex Optimization: Wasserstein Distance Variation

论文作者

Shames, Iman, Farokhi, Farhad

论文摘要

经常研究分布型优化的固定分布,而不是随时间变化的时变分布(例如,由于经济的扩展和人口统计学的发展,财务和社会学的情况)。这激发了使用Wasserstein距离对概率分布的理解,该距离可用于建模时变环境。然后,我们可以将这些条件与在线随机优化结合使用以适应决策。我们考虑了一种在线近端梯度方法,可以跟踪由随机变量参数的平滑凸函数的最小化,该变量的概率分布会随着时间的流逝而以与决策者ACT的速率相似的速率连续发展。我们重新审视灵感来自系统和控制文献启发的估计和跟踪错误的概念,并在强大的凸度,梯度的Lipschitzness和概率分布漂移方面为它们提供界限。此外,注意到一般可行集合的计算预测可能不适合在线实施(由于计算限制),我们提出了一种确切的惩罚方法。这样做可以使我们放松梯度的统一界限,并为跟踪和估计误差建立动态遗憾界限。我们进一步介绍了一种约束密集的方法,并将收紧量与满足约束的可能性联系起来。

Distributionally-robust optimization is often studied for a fixed set of distributions rather than time-varying distributions that can drift significantly over time (which is, for instance, the case in finance and sociology due to underlying expansion of economy and evolution of demographics). This motivates understanding conditions on probability distributions, using the Wasserstein distance, that can be used to model time-varying environments. We can then use these conditions in conjunction with online stochastic optimization to adapt the decisions. We considers an online proximal-gradient method to track the minimizers of expectations of smooth convex functions parameterised by a random variable whose probability distributions continuously evolve over time at a rate similar to that of the rate at which the decision maker acts. We revisit the concepts of estimation and tracking error inspired by systems and control literature and provide bounds for them under strong convexity, Lipschitzness of the gradient, and bounds on the probability distribution drift. Further, noting that computing projections for a general feasible sets might not be amenable to online implementation (due to computational constraints), we propose an exact penalty method. Doing so allows us to relax the uniform boundedness of the gradient and establish dynamic regret bounds for tracking and estimation error. We further introduce a constraint-tightening approach and relate the amount of tightening to the probability of satisfying the constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源